



# Differential Privacy for Supercomputer Sensor Data





LA-UR-19-27097

Ultrascale Systems Research Center

## Spencer Ortega

University of Southern California

Mentors: Dr. Nathan DeBardeleben (HPC-DES), Dr. Claire Bowen (CCS-6)

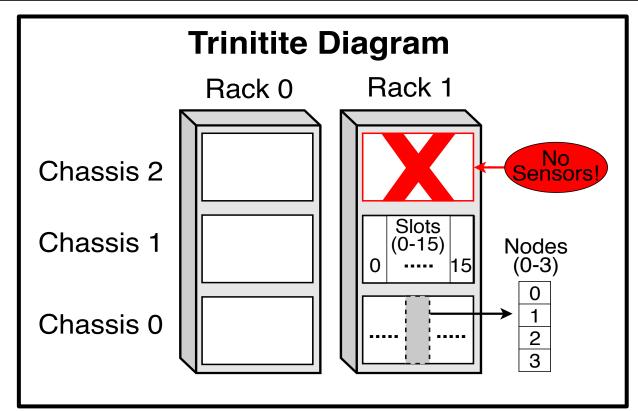
#### Introduction

- Problem: Data-driven research is in need of a secure way to protect sensitive data to release for public use
- Previously used data protection methods contain vulnerabilities
   E.g. cross-referencing of external data sources to re-identify data
- Differential Privacy (DP) aims to solve this problem
  - Add random "noise" to blur results of statistical queries

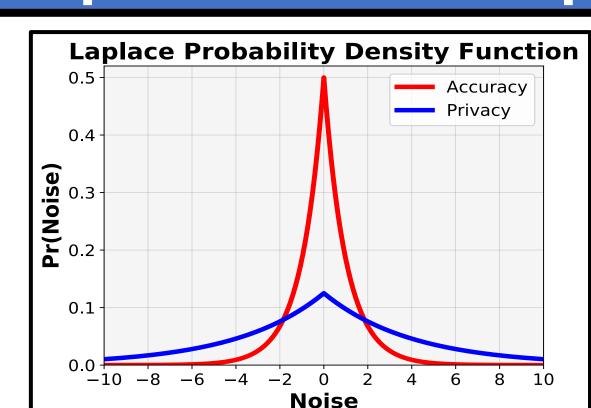
#### **Differential Privacy**

- Two-World Privacy
  - Goal: make the results of a query on two datasets, with the presence and absence of any record, indistinguishable from one another.
- Privacy-Loss Budget
  - Quantifies and bounds how much sensitive information can be leaked
- Trade-off between privacy and accuracy
- Global Sensitivity (GS) of a Query
- Max difference of query results on any possible 'Two-World' datasets

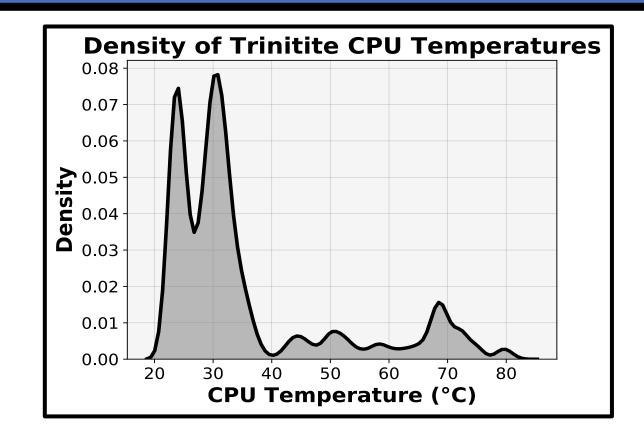
### Experimental Setup



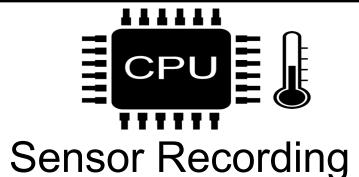
- Apply DP to supercomputer sensor data
- To the best of our knowledge, has never been implemented for this domain of data
- Used sensor data from the Trinitite system



- Sample DP noise from Laplace PDF
- Laplace width affects noise sampling
   Wide: more random (privacy)
  - Narrow: more deterministic (accuracy)
- (GS / ε) is used to scale the width



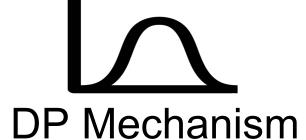
- Focused on CPU temperatures
- Easy enough to explain, compared to other more complicated sensors
- Sensitive enough to possibly infer jobs running on the system

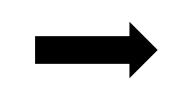








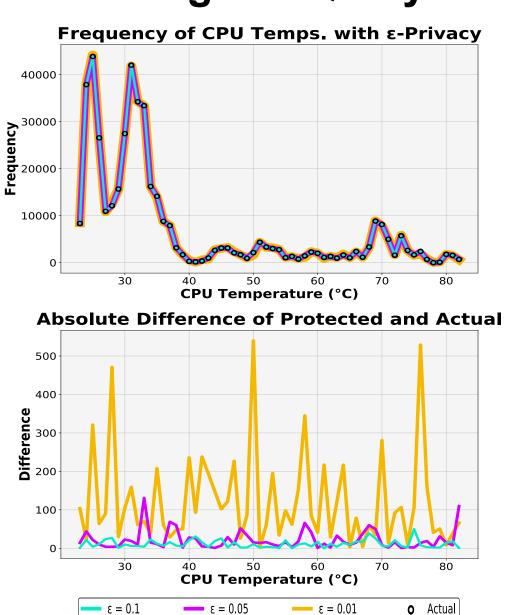






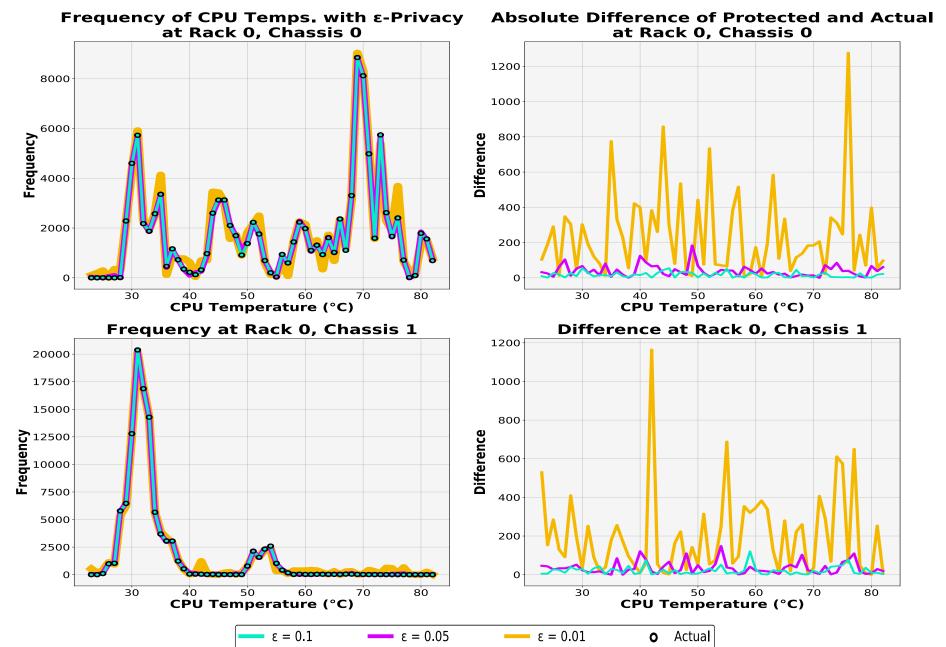
#### Results

#### Histogram Query



- Illustrates the simplest case of protecting CPU temperature data
- We observe that the smaller ε gets,
   the more the protected results deviate
- Not a very robust query if we cant analyze aggregate information by group (location)

#### Histograms by Rack, Chassis



- One approach to protecting aggregate information is by exhaustively asking a query for each group
- ε must be divided for each query, making results for more granular groups very inaccurate
- We see an example of this drop in accuracy when grouping histograms by rack, chassis (divide ε by 5)

#### **Cross Tabulation by Slot and Temp.**



- A smarter approach: Cross Tabulation
- Only ask one query about all groups (divide ε by 1)
- Our cross tabulation results with ε set to 1 and .5 insist that we should use .5 instead because it has similar accuracy to 1, but leaks less sensitive information

#### **Future Work**

- Apply DP to other types of supercomputer sensors
- Test other DP algorithms on this data
   Exponential Mechanism
- Explore ε values for appropriate protection of these different types of sensors and mechanisms
- Synthesize datasets by sampling protected histograms
   Synthetic data can be queried without privacy-loss budget
- Compare accuracy of analysis to unprotected data
- Potential work with vendors to satisfy NDA's for data sharing

#### Acknowledgements

- Research was supported by LANL Laboratory
   Directed research and Development (LDRD) program at Los Alamos National Laboratory
- Special thanks to my mentors and other USRC staff that helped me throughout my internship